Received 16 June 2007 Accepted 15 April 2008

Acta Crystallographica Section B Structural Science

ISSN 0108-7681

Günther J. Redhammer,^a* Georg Roth,^b Georg Amthauer^a and Werner Lottermoser^a

^aDepartment of Materials Engineering and Physics, Division of Mineralogy, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria, and ^bInstitute of Crystallography, RWTH Aachen, Jägerstrasse 17/19, D-52056 Aachen, Germany

Correspondence e-mail: guenther.redhammer@aon.at

© 2008 International Union of Crystallography Printed in Singapore – all rights reserved

On the crystal chemistry of olivine-type germanate compounds, $Ca_{1+x}M_{1-x}GeO_4$ (M^{2+} = Ca, Mg, Co, Mn)

Germanate compounds, CaMGeO₄ with M^{2+} = Ca, Mg, Co and Mn. were synthesized as single crystals by slow cooling from the melt or by flux growth techniques. All the compositions investigated exhibit Pnma symmetry at 298 K and adopt the olivine structure. The M2 site is exclusively occupied by Ca^{2+} , while on M1 both Ca^{2+} and M^{2+} cations are found. The amount of Ca^{2+} on M1 increases with the size of the M1 cation, with the smallest amount in the Mg compound (0.1 atoms per formula unit) and the largest in the Mn compound (0.20 atoms per formula unit), while in Ca₂GeO₄, also with olivine structure, both sites are completely filled with Ca^{2+} . When compared with those of Ca silicate olivine, the lattice parameters a and c are distinctly larger in the analogous germanate compounds, while b has essentially the same values, regardless of the tetrahedral cation, meaning that b is independent of the tetrahedral cation. Structural variations on the octahedrally coordinated M1 site are largely determined by the size of the M1 cation, the average M1-O bond lengths being identical in Ca silicate and Ca germanate olivine. Increasing the size of the M1 cation induces an increasing polyhedral distortion, expressed by the parameters bondlength distortion, octahedral angle variance and octahedral quadratic elongation. However, the Ca germanate olivine compounds generally have more regular octahedra than the analogous silicates. The octahedrally coordinated M2 site does not exhibit large variations in structural parameters as a consequence of the constant chemical composition; the same is valid for the tetrahedral site.

1. Introduction

The olivine structure type is frequently found, both in natural and in synthetic compounds. Olivine itself, $(Fe,Mg)_2SiO_4$, is the most abundant material of the Earth's mantle and a huge amount of information is available for this mineral group (see *e.g.* Brown, 1980; Deer *et al.*, 1997). The olivine structure is also realized in many other A_2BX_4 compounds, among them synthetic LiInSiO₄ (Redhammer & Roth, 2003), triphylite (LiFePO₄; Losey *et al.*, 2004; Streltsov *et al.*, 1993; a material that has been intensively studied recently because of its potential application as an electrode material in Li batteries), alexandrite (Al₂BeO₄:Cr; examined within our group: Weber *et al.*, 2007), and sinhalite (MgAlBO₄; Hayward *et al.*, 1994).

The olivine structure contains two distinct octahedrally coordinated metal sites M (with M1 on special position 4a, site symmetry $\overline{1}$, and M2 on special position 4c, site symmetry m) and one isolated tetrahedrally coordinated polyhedron (T, also in special position 4c, Pnma setting). The dominant feature of the olivine structure is a stretched infinite chain of edge-sharing M1 octahedra parallel to the b axis. At the same

Table 1

Chemical composition of selected $CaM^{2+}GeO_4$ olivine compounds of this study, as determined by electron microprobe analysis.

	CaCo_a1	CaCo_a2	Ca2Co_2	CaMg_a1	Ca2Mg_1	CaMn_a2	Ca2Mn_1	CaZn_b			
Oxide weight percent (wt%)											
CaO	26.39 (13)	26.01 (15)	28.91 (11)	32.08 (14)	29.84 (12)	29.57 (11)	32.26 (14)	51.46 (12)			
MgO	_	_		16.70 (6)	18.27 (6)		_				
CoO	28.59 (9)	29.01 (8)	25.97 (8)	_	_ ``	-	-	-			
MnO	_	_	-	-	-	25.25 (7)	21.18 (7)	-			
GeO ₂	44.79 (6)	44.50 (8)	45.31 (8)	51.07 (11)	51.52 (9)	45.49 (7)	46.88 (9)	48.32 (7)			
Sum	99.78	99.53	100.18	99.85	99.63	100.31	99.82	99.69			
Stoichiometric coefficients											
Ca^{2+}	1.11	1.09	1.19	1.16	1.08	1.20	1.31	1.99			
Mg^{2+}	_	_	-	0.84	0.92	-	_	_			
Co ²⁺	0.90	0.91	0.80	_	-	-	_	_			
Mn ²⁺	_	_	-	_	-	0.81	0.68	_			
Ge ⁴⁺	1.01	1.00	1.00	0.99	1.00	0.99	1.01	1.00			

Compound IDs define the nominal composition of the starting material: $CaCo_{-} = CaCoGeO_4$, $Ca2Co_{-} = Ca_2CoGe_2O_7$, $CaMg_{-} = CaMgGeO_4$, $Ca2Mg_{-} = Ca_2MgGe_2O_7$, $CaMn_{-} = CaMnGeO_4$, $Ca2Mn_{-} = Ca_2MnGe_2O_7$ and $CaZn_{-} = CaZnGeO_4$, numbers behind '_' are internal crystal numbers.

z height, the M2 octahedra are attached to this chain on opposite sides of a central M1 octahedron by common edges; thus the M1 and M2 sites together are described as an infinite zigzag chain parallel to b (e.g. Brown, 1980; Lager & Meagher, 1978). Zigzag chains in layers above and below are separated by an a/2 displacement along the (102) direction. The M1 octahedron shares six of its O-O edges with adjacent polyhedra – two with M1, two with M2 and two with the neighbouring tetrahedron - while the M2 polyhedron shares two edges with M1 and one with the tetrahedron, all of these edges belonging to the same triangular face of the M2 octahedron. The tetrahedra are isolated from each other, having the apex pointing up and down, and crosslink the M chains of different layers along the **c** direction. Fig. 1(a) displays part of the olivine structure, containing the asymmetric unit and some symmetry-related atoms including the symmetry codes, while Fig. 1(b) displays the complete unit cell.

In silicate olivine at ambient conditions (Brown, 1980) it is accepted that large divalent cations (Ca²⁺, Mn²⁺) tend to order onto the M2 site, while small cations preferentially occupy the M1 site. It was also found that Co^{2+} shows a strong preference for the M1 site, for example in Co_{1}^{2+} olivine ($Co_{1}Mg_{0}SiO_{4}$; Ghose & Wan, 1974). Recent work mainly focused on in-situ experiments to study cation ordering at high temperatures (Rinaldi et al., 2000, 2005; Redfern et al., 1997, 2000; Henderson et al., 1996; Artioli et al., 1995). These studies revealed a crossover in ordering behaviour at high temperatures; for example, Fe^{2+} prefers the M2 site above ~900 K in (Mg,Fe)SiO₄ olivine (Artioli et al., 1995; Redfern et al., 2000). Similarly Mn^{2+} shows a preference for the M2 site at low temperatures but becomes increasingly disordered between M1 and M2 (Redfern et al., 1997), while Co²⁺ shows a distinct preference for M1, even at high temperature (Rinaldi et al., 2005).

While silicate olivine is studied frequently, investigations of analogous germanate compounds are rare. Single-crystal structure determinations with the relevant data are only available for CaMgGeO₄ (van Duijn et al., 1995). Eulenberger et al. (1962) reported the synthesis of Ca₂GeO₄ and found the olivine structure for it, but no additional data are given. Mn₂GeO₄, Ca₂GeO₄ and CaMgGeO₄ were investigated up to pressures of \sim 30 GPa using X-ray diffraction and X-ray absorption spectroscopy (Petit et al., 1996) and by highpressure Raman spectroscopy (Reynard et al., 1997). Structural phase transitions have been observed above 6 and 12 GPa for Ca₂GeO₄ and CaMgGeO₄, respectively (Petit et al., 1996); the nature of the structural changes, however, remains uncertain. It was noted, though, that analogous germanate compounds are more suitable, for example, for high-pressure experiments, as phase transitions appear to take place at distinctly lower pressures than in the silicate compounds (Petit et al., 1996).

In this present contribution the atomic arrangement of a series of synthetic Ca germanate olivines is determined from

(a) A view of the asymmetric unit and some symmetry-related atoms of Ca₂GeO₄, showing 95% probability displacement ellipsoids and the atomic nomenclature scheme [symmetry codes: (i) $x, \frac{1}{2} - y, z;$ (ii) $-\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z;$ (iii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z;$ (iv) $\frac{1}{2} - x, -y, \frac{1}{2} + z;$ (v) x, y, 1 + z; (vi) $1 - x, -\frac{1}{2} + y, 1 - z;$ (vii) 1 - x, -y, 1 - z; (viii) $1 - x, -\frac{1}{2} + y, -z].$ (b) A full polyhedral representation of the olivine structure.

Table 2

Data collection parameters and results of structure refinement for selected $CaM^{2+}GeO_4$ olivine compounds of this study.

	CaMg_a1	CaCo_a1	CaMn_a2	Ca2Mn_1	CaZn_b
Crystal data					
Chemical formula	$Ca_{1,16}GeMg_{0,83}O_{4}$	$Ca_{111}Co_{089}GeO_4$	$Ca_{1,17}GeMn_{0,83}O_4$	$Ca_{1,31}GeMn_{0,69}O_4$	GeO ₄ .1.99(Ca)
M _r	203.52	233.55	229.16	227.02	216.37
Cell setting, space group	Orthorhombic, Pnma	Orthorhombic, Pnma	Orthorhombic, Pnma	Orthorhombic, Pnma	Orthorhombic, Pnma
Temperature (K)	295 (2)	295 (2)	295 (2)	295 (2)	295 (2)
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.2916 (7), 6.4405 (4), 5.0251 (3)	11.2873 (7), 6.4369 (4), 5.0245 (3)	11.3256 (7), 6.5643 (4), 5.1098 (3)	11.3391 (7), 6.6035 (4), 5.1326 (3)	11.3919 (7), 6.7800 (4), 5.2424 (3)
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90
$V(A^3)$	365.44 (4)	365.06 (4)	379.89 (4)	384.32 (4)	404.91 (4)
Z	4	4	4	4	4
D_x (Mg m ⁻³)	3.7	4.249	4.007	3.924	3.55
Radiation type	Μο Κα	Μο Κα	Μο <i>Κα</i>	Μο <i>Κα</i>	Μο Κα
$\mu \text{ (mm}^{-1})$	10.01	13.71	12.14	11.74	9.96
Crystal form, colour	Cuboid, colourless	Cuboid, pink	Cuboid, brown	Cuboid, brown	Cuboid, colourless
Crystal size (mm)	$0.07 \times 0.05 \times 0.04$	$0.13 \times 0.12 \times 0.09$	$0.18 \times 0.15 \times 0.14$	$0.14 \times 0.12 \times 0.11$	$0.13 \times 0.12 \times 0.09$
Data collection					
Diffractometer	Bruker SMART APEX	Bruker SMART APEX	Bruker SMART APEX	Bruker SMART APEX	Bruker SMART APEX
Data collection method	ω scans	ω scans	ω scans	ω scans	ω scans
Absorption correction	Numerical	Numerical	Numerical	Numerical	Numerical
T_{\min}	0.55	0.19	0.23	0.21	0.29
$T_{\rm max}$	0.67	0.30	0.34	0.27	0.42
No. of measured, independent and observed reflections	4411, 542, 536	4315, 531, 528	4624, 555, 548	4316, 517, 510	4870, 595, 588
Criterion for observed reflections	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$
Rint	0.036	0.040	0.058	0.054	0.039
$\theta_{\rm max}$ (°)	29.7	29.3	29.5	28.4	29.4
No. and frequency of standard reflections Intensity decay (%)					
Refinement					
Refinement on	F^2	F^2	F^2	F^2	F^2
$\frac{R[F^2 > 2\sigma(F^2)]}{S}, wR(F^2),$	0.022, 0.051, 1.22	0.021, 0.049, 1.20	0.021, 0.050, 1.22	0.020, 0.045, 1.24	0.018, 0.044, 1.24
No. of reflections	542	531	555	517	595
No. of parameters	43	43	45	44	41
H-atom treatment	No H atoms present	No H atoms present			
Weighting scheme	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0229P)^{2} + 0.4844P], \text{ where } P = (F^{2} + 2F^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0183P)^{2} + 1.0355P], \text{ where } P = (F^{2} + 2F^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0218P)^{2} + 0.2627P], \text{ where } P = (F^{2} + 2F^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0157P)^{2} + 0.6189P], \text{ where } P = (F^{2} + 2F^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.019P)^{2} + 0.4001P]$ where $P = (F^{2} + 2F^{2})/3$
$(\Delta/\sigma)_{max}$	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.770.61	0.66, -0.58	0.8, -0.65	0.78, -0.96	0.69, -0.45
Extinction method	None	SHELXL	SHELXL	None	SHELXL
Extinction coefficient	-	0.0090 (10)	0.0288 (18)	_	0.0145 (14)

Computer programs used: SMART-Plus, SAINT-Plus (Bruker, 2001), SHELXS97, SHELXL97 (Sheldrick, 2008), DIAMOND Version 3.0 (Pennington, 1999), WinGX Version 1.70.01 (Farrugia, 1999).

single-crystal X-ray diffraction data at ambient conditions, and crystal–chemical comparison is made with the analogous silicate olivine. Structural investigations at non-ambient conditions are in progress and will be reported elsewhere.

2. Experimental

2.1. Material synthesis

Single crystals of germanate olivines were obtained either by slow cooling from the melt (self-flux) or by flux-growth techniques using $CaCl_2$ as the high-temperature solvent. In a first set of experiments, the olivine-type compounds were synthesized by chance during attempts to synthesize $Ca_2M^{2+}Ge_2O_7$ -type compounds (M^{2+} = Mg, Ni, Co and Mn) similar to $Ca_2ZnGe_2O_7$ (Redhammer & Roth, 2006). Finely ground, homogeneous mixtures of $CaCO_3$, GeO_2 and *M*-oxides (MgO, NiO, Co_2O_3 and MnO) with the stoichiometry of $Ca_2M_2Ge_2O_7$ were filled into small platinum tubes (20 mm in length, 3 mm inner diameter, welded tight on one side, the other side open), put into a chamber furnace and heated from room temperature to 1773 K within 12 h. The temperature was stabilized at 1773 K for 24 h and then slowly decreased to 1273 K at a rate of 3 K h⁻¹. The products of the

Table 3

Selected structural and polyhedral distortion parameters for the Ge olivine compounds given in Table 2.

Bond lengths are given in Å, BLD in %, volume in Å³, and OAV and TAV in °; TQE and OQE are dimensionless. Polyhedral volumes were calculated using the program *XTALDRAW* (Downs, 2005).

1.4	01	0.0	~~	(3.6		DID	T 7	0.1171	005
M1 site	01	02	03	$\langle M \rangle$	$ -0\rangle$	BLD⊺	V	OAV‡	OQE§
CaCo_a1	2.180 (2)	2.147 (2)	2.185 (2) 2.17	71	0.73	13.20	79.27	1.0217
CaMg_a1	2.191 (2)	2.140 (2)	2.179 (2) 2.17	70	0.93	13.19	81.00	1.0222
CaMn_a2	2.262 (2)	2.217 (2)	2.276 (2) 2.25	52	1.03	14.58	104.50	1.0289
Ca2Mn_1	2.277 (2)	2.234 (2)	2.295 (2) 2.26	58	1.02	14.86	112.55	1.0313
CaZn_b	2.351 (2)	2.330 (2)	2.409 (2) 2.30	53	1.29	16.53	150.48	1.0425
M2 site	O1	O2	O3	O3	⟨Ca−	O> BLD	• V	OAV	OQE
CaCo_a1	2.439 (2)	2.313 (2)	2.434 (2)	2.296	2.369	2.83	16.84	124.36	1.0355
CaMg_a1	2.455 (2)	2.317 (2)	2.433 (2)	2.298	2.372	2.87	16.90	125.76	1.0358
CaMn_a2	2.436 (2)	2.305 (2)	2.440 (2)	2.309	2.373	2.75	16.98	118.51	1.0337
Ca2Mn_1	2.444 (2)	2.308 (2)	2.443 (2)	2.323	2.381	2.64	17.12	120.31	1.0341
CaZn_b	2.446 (2)	2.296 (2)	2.462 (2)	2.362	2.398	2.43	17.43	130.68	1.0371
	01	~				DID	*7		TOP
T site	01	02	03	(0	je–O	BLD	V	TAV†	TQE‡
CaCo_a1	1.746 (2)	1.775 (2) 1.760 (2) 1.	760	0.43	2.73	73.72	1.0168
CaMg_a1	1.740 (2)	1.776 (2) 1.756 (2) 1.	757	0.54	2.71	77.86	1.0177
CaMn_a2	1.735 (2)	1.776 (2) 1.761 (2) 1.	758	0.66	2.73	60.20	1.0135
Ca2Mn_1	1.735 (2)	1.773 (2) 1.761 (2) 1.	757	0.64	2.73	59.34	1.0133
CaZn_b	1.745 (2)	1.780 (2) 1.763 (2) 1.	763	0.51	2.77	46.67	1.0106

† BLD = $(100/n) \sum_{i=1}^{n} |(X-O)_i - \langle X-O \rangle|/\langle X-O \rangle \%$. *n* is the number of cation-anion bonds and X-O = cation-anion (oxygen) distance (Renner & Lehmann, 1986). $\ddagger OAV = \sum_{i=1}^{l_2} (\Theta_i - 90^\circ)^2/11$, where Θ_i is the O-M-O bonding angle (Robinson *et al.*, 1971). $\$ OQE = \sum_{i=1}^{6} (l_i/l_o)^2/6$, where l_o is the centre-to-vertex distance for a regular octahedron whose volume is equal to that of the undistorted tetrahedron with bond length l_i (Robinson *et al.*, 1971). $\ddagger TAV = \sum_{i=1}^{6} (\Theta_i - 109.57^\circ)^2/5$, with $\Theta_i = O-T-O$ bonding angle (Robinson *et al.*, 1971). $\ddagger TQE = \sum_{i=1}^{4} (l_i/l_i)^2/4$, where l_i is the centre-to-vertex distance for a regular tetrahedron whose volume is equal to that of the undistorted output wertex distance for a regular tetrahedron whose volume is equal to that of the undistorted octahedron with bond length l_i (Robinson *et al.*, 1971).

syntheses were the following three pairs: olivine-type CaMgGeO₄ and spinel-type Mg₂GeO₄, CaCoGeO₄ and traces of dark-pink Co₂GeO₄ spinel, and CaMnGeO₄ and glass; for the experiment with M^{2+} = Ni the synthesis batch consisted of Ni₂GeO₄ as the main phase with a minor component of Ca₅Ge₃O₁₁ (Barbier & Levy, 1997).

In a second step, oxide mixtures in the stoichiometry of olivine-type material $CaM^{2+}GeO_4$ ($M^{2+} = Mg$, Zn, Ni, Co and Mn) were used for synthesis. Again, the finely ground, homogeneous starting materials were put into Pt tubes; however, the temperature treatment was slightly altered: heating to 1623 K within 24 h, stabilizing at this temperature for another 24 h and slow cooling to 1273 K at a rate of 2.8 K h⁻¹. For the second series, experimental batches consisted of olivine-type CaMgGeO₄, CaCoGeO₄ with minor traces of Co₂GeO₄ spinel and CaMnGeO₄ with traces of glass. The experiment with M^{2+} = Ni again yielded Ni₂GeO₄ spinel as the main phase with some Ca₅Ge₃O₁₁ (presumably containing traces of Ni, as concluded from its pale olive-green colour); the experiment with Zn resulted in large crystals of Zn_2GeO_4 (up to 1 mm in size) and a minor component of monoclinic Ca₂ZnGe₂O₇ (Redhammer & Roth, 2006).

Ca₂GeO₄ was grown using a high-temperature solution method with CaCl₂ as the flux. CaCl₂ was added to a stoichiometric mixture of CaCO₃ and GeO₂ in a ratio of edduct to flux of 1:2. The assemblage was put into a platinum crucible, covered with a lid and heated in a chamber furnace to 1273 K, held for 24 h at 1273 K, and cooled to 1073 K at a rate of 4 K h^{-1} . After soaking the flux with hot distilled water, large colourless crystals of Ca₂GeO₄ up to 2 mm in size were obtained. The method is similar to that described by Bykov et al. (2000) for the synthesis of $Ca_2GeO_4:Cr^{4+}$ crystals. We also attempted to apply the flux-growth technique with CaCl₂ to the synthesis of CaZnGeO₄ and CaNiGeO₄ using the same flux-to-nutrient ratio and an identical temperature program. After soaking the flux, the synthesis batches consisted of large crystals of Ca2GeO4 and fine-grained Ni or Zn spinel, respectively. From this result it is concluded that it is not possible to grow CaNiGeO4 or CaZnGeO₄ olivine-type germanates at ambient pressures.

2.2. Chemical analysis

The chemical composition of selected samples was determined by electron microprobe analysis. Crystal aggregates of the synthesis batches were embedded in epoxy resin, polished, covered with carbon and analysed with a Jeol JXA 8600 electron microprobe (acceleration voltage 15 kV, initial beam current 40 nA, beam focused to 5 μ m). At least three different grains of each composition were analysed, with a minimum of ten analyses per

grain. For all samples investigated, the crystals were homogeneous both within a grain and from grain to grain. The results of chemical analysis are given in Table 1.

2.3. Single-crystal X-ray diffraction

Suitable single crystals were glued onto glass capillaries with diameters of 100 µm. Intensity data sets were collected on a Bruker SMART APEX 4K CCD system (Mo Ka radiation, crystal–detector distance = 60 mm, ω scans at four different φ positions, frame width = 0.3°). Lattice parameters determined from single-crystal X-ray diffraction data agree well with those determined from powder X-ray diffraction. Absorption correction was performed empirically via symmetry equivalents using the SHAPE software (Stoe & Cie, 1996). Structure solution (using Patterson methods) and subsequent refinement was carried out with the programs SHELXS97 and SHELXL97 (Sheldrick, 2008), as implemented in the program suite WinGX (Version 1.64; Farrugia, 1999). X-ray scattering factors for the relevant ions, together with anomalous dispersion coefficients, were taken from the International Tables for Crystallography (1992, Vol. C).

 Table 4

 Selected structural and polyhedral distortion parameters for silicate olivines as recalculated from literature data.

Compound	ICSD No.	Ref.	$\stackrel{r_M}{(A)}$	a (Å)	b (Å)	c (Å)	$\langle M1 - O \rangle$ (Å)	BLD (%)	OAV (°)	$\langle M2 - O \rangle$ (Å)	BLD (%)	OAV (°)	$\langle Si - O \rangle$ (Å)	BLD (°)	TAV (°)
Ca silicate series															
$Ca_{1,00}Mg_{0,02}Fe_{0,07}SiO_4$	100646	lag	0.862	11.1110	6.3830	4.8250	2.129	3.43	103.94	2.369	2.91	168.13	1.638	1.65	48.52
$Ca_{0.98}Mn_{0.87}Mg_{0.10}SiO_{4}$	100650	lag	0.901	11.1510	6.4880	4.9130	2.209	1.47	133.52	2.366	2.56	165.01	1.635	0.41	33.13
$Ca_{1.00}Mg_{0.31}Fe_{0.60}SiO_4$	83825	fol	0.881	11.1640	6.4470	4.8750	2.182	0.91	123.69	2.369	2.88	167.77	1.639	0.49	34.68
$Ca_{1.00}Mg_{0.22}Fe_{0.78}SiO_4$	83824	fol	0.880	11.1660	6.4480	4.8770	2.179	1.22	122.02	2.368	2.91	168.82	1.639	0.51	33.96
$Ca_{1,26}Co_{0,74}SiO_{4}$	68351	kim	0.901	11.1500	6.4530	4.8660	2.180	1.44	121.29	2.366	2.71	167.87	1.637	0.54	32.91
$Ca_{1,00}Mg_{1,00}SiO_4$	202280	sha	0.860	11.1050	6.3810	4.8210	2.133	4.38	100.75	2.373	2.81	164.33	1.625	1.56	50.75
$Ca_{1.00}Mg_{0.88}Fe_{0.12}SiO_4$	79792	pil	0.864	11.1098	6.3894	4.8281	2.136	3.17	104.13	2.365	2.87	166.52	1.637	0.63	42.40
$Ca_{1,00}Mg_{1,00}SiO_4$	34591	onk	0.860	11.1080	6.3820	4.8220	2.131	3.51	110.36	2.370	2.68	174.24	1.626	0.59	43.30
Ca _{1.00} Mg _{1.00} SiO ₄	68753	del	1.000	11.2250	6.7600	5.0780	2.352	1.35	209.47	2.392	1.65	180.82	1.646	0.38	27.21
M_2 SiO ₄ series															
Mg ₂ SiO ₄	68755	del	0.720	10.2070	5.9800	4.7560	2.095	1.18	96.30	2.133	3.33	90.57	1.635	0.60	49.08
$Mg_{1.20}Fe_{0.77}Mn_{0.01}SiO_4$	64954	del	0.745	10.3270	6.0310	4.7860	2.124	1.67	109.79	2.152	3.75	104.37	1.636	0.59	43.10
Fe ₂ SiO ₄	64901	del	0.780	10.4700	6.0860	4.8180	2.157	2.33	143.51	2.184	4.03	134.87	1.620	0.70	36.33
Ni ₂ SiO ₄	64952	del	0.700	10.1230	5.9140	4.7310	2.083	0.81	93.41	2.101	2.15	77.80	1.632	0.71	51.13
$Ca_{0.02}Mg_{0.06}Fe_{1.80}Mn_{0.12}SiO_4$	64953	del	0.783	10.5080	6.1000	4.8260	2.158	1.94	71.42	2.168	9.24	67.31	1.728	5.29	35.06
Fe ₂ SiO ₄	26375	fuj	0.780	10.4788	6.0873	4.8195	2.161	2.32	130.09	2.177	4.46	124.92	1.636	0.52	36.72
Mn_2SiO_4	26376	fuj	0.820	10.5964	6.2567	4.9023	2.206	1.33	138.78	2.227	3.52	126.98	1.639	0.61	36.14
$Mg_{0.17}Mn_{1.83}SiO_4$	100433	fra	0.797	10.5890	6.2340	4.8790	2.187	1.42	128.35	2.228	3.85	125.39	1.639	0.86	35.65
$Mg_{1.84}Fe_{0.16}$	40726	pri	0.725	10.2242	5.9908	4.7624	2.101	1.24	99.15	2.136	3.39	93.39	1.635	0.61	48.92
Mg _{1.83} Fe _{0.17} Ni _{0.02}	40727	pri	0.725	10.2292	5.9919	4.7619	2.102	1.27	99.02	2.136	3.40	94.03	1.635	0.64	48.61
Mg _{1.83} Fe _{0.16} Ni _{0.01} SiO ₄	40728	pri	0.725	10.2264	5.9912	4.7625	2.101	1.26	99.05	2.136	3.33	93.47	1.635	0.63	49.73
Mg _{1.79} Fe _{0.20} Ni _{0.01} SiO ₄	40729	pri	0.726	10.2314	5.9947	4.7365	2.102	1.25	98.03	2.137	3.44	93.73	1.636	0.70	48.47
$Mg_{1.64}Fe_{0.36}SiO_4$	40730	pri	0.731	10.2642	6.0071	4.7688	2.109	1.36	102.79	2.142	3.50	97.67	1.635	0.60	46.72
Mg _{1.62} Fe _{0.38} SiO ₄	40731	pri	0.731	10.2659	6.0130	4.7704	2.110	1.35	102.96	2.144	3.64	98.35	1.636	0.57	45.81
$Mg_{1.21}Fe_{0.79}SiO_4$	40732	pri	0.744	10.3273	6.0307	4.7861	2.124	1.58	109.31	2.153	3.80	104.32	1.636	0.57	43.87
$Mg_{1.06}Fe_{0.90}Mn_{0.04}SiO_4$	40733	pri	0.749	10.3475	6.0423	4.7901	2.130	1.61	112.80	2.156	3.80	107.15	1.636	0.52	42.63
$Mg_{0.35}Fe_{1.55}Mn_{0.11}SiO_4$	40734	pri	0.772	10.4712	6.0933	4.8207	2.157	2.08	127.17	2.181	4.31	121.59	1.635	0.46	36.60
$Mg_{0.15}Fe_{1.74}Mn_{0.11}SiO_4$	40735	pri	0.778	10.4959	6.0960	4.8256	2.160	2.10	127.67	2.190	5.04	143.74	1.637	0.45	38.88
$Mg_{0.14}Fe_{1.74}Mn_{0.12}SiO_4$	40736	pri	0.778	10.5095	6.0980	4.8269	2.161	2.22	129.52	2.184	4.23	123.96	1.638	0.47	38.60
$Mg_{0.11}Fe_{1.74}Mn_{0.12}SiO_4$	40737	pri	0.779	10.5084	6.0996	4.8245	2.162	2.18	130.27	2.185	4.24	124.89	1.635	0.47	37.77
$Mg_{0.08}Fe_{1.74}Mn_{0.12}SiO_4$	40738	pri	0.780	10.5084	6.1028	4.8267	2.161	2.18	129.11	2.186	4.32	123.96	1.638	0.44	38.18
$Mg_{2.00}SiO_4$	20270	boe	0.720	10.1985	5.9792	4.7549	2.095	1.12	95.06	2.129	3.29	89.75	1.636	0.63	47.72
Mg _{1.40} Ni _{0.60} SiO ₄	20271	boe	0.714	10.1993	5.9567	4.7447	2.093	0.97	91.49	2.121	3.10	85.42	1.637	0.66	46.37
Mg _{1.28} Ni _{0.72} SiO ₄	20272	boe	0.713	10.1947	5.9508	4.7437	2.091	0.98	91.26	2.120	2.99	84.95	1.638	0.60	47.08
$Mg_{1.98}Ni_{1.02}SiO_4$	20273	boe	0.710	10.1830	5.9430	4.7389	2.090	0.90	89.93	2.105	2.40	81.77	1.638	0.63	45.99
$Mg_{0.62}Ni_{1.38}SiO_4$	20274	boe	0.706	10.1612	5.9317	4.7352	2.086	0.87	88.52	2.110	2.64	78.04	1.638	0.71	48.95
$Mg_{0.50}Ni_{1.50}SiO_4$	20275	boe	0.705	10.1565	5.9285	4.7331	2.086	0.86	88.66	2.107	2.59	77.05	1.639	0.70	48.66
Ni ₂ SiO ₄	20276	boe	0.700	10.1209	5.9150	4.7298	2.080	0.76	87.98	2.100	2.40	72.93	1.615	1.72	52.86

References: Lag: Lager & Meagher (1978); fol: Folco & Mellini (1997); kim: Kimata & Nishida (1987); sha: Sharp *et al.* (1987); pil: Pilati *et al.* (1995); onk: Onken (1965); del: Della Giusta *et al.* (1990); fuj: Fujino *et al.* (1981); fra: Francis & Ribbe (1980); pri: Princivalle & Secco (1985); boe: Boström (1987). For definitions of parameters BLD, OAV and TAV see Table 2.

3. Results and discussion

The analysis of systematic absences and intensity statistics indicated space group *Pnma* for all samples of this study. In contrast to the literature, it was decided to use the standard setting of space group No. 62, *Pnma*, instead of the nonstandard *Pbnm* setting that is commonly used for olivine. Data can easily be converted to the lattice parameters and coordinates of the *Pbnm* setting by applying the transformation matrix vector (0 0 1, 1 0 0, 0 1 0). Full-matrix least-squares refinements based on F^2 using anisotropic atomic displacement parameters converged to $R_1 < 2.5\%$ for all data sets. Independently from the electron microprobe analysis (Table 1), the chemical composition of the samples was determined from site occupation refinement. It was found that the *M*2 site is fully and exclusively occupied by Ca²⁺, while on the *M*1 site there is a disorder of M^{2+} and Ca^{2+} . The amount of Ca^{2+} found on M1 is small in the compound with nominal composition $CaMgGeO_4$ (~0.1–0.15 atoms per formula unit) but increases with increasing size of the M^{2+} cation up to ~0.3 in nominal $CaMnGeO_4$. The tetrahedral site was assumed to be completely filled by Ge^{4+} . The total amount of Ca^{2+} and Me^{2+} found by site occupation refinement is in very close agreement with the composition found by electron microprobe analysis. The cation distribution for the synthetic samples, formed directly from the melt, is as expected, with the larger Ca^{2+} cation occupying the M2 site, while Mg^{2+} , Co^{2+} and Mn^{2+} are ordered on M1. As the samples were grown above 1273 K the additional enrichment of Ca^{2+} onto M1 can be seen in the light of the preference of larger cations for M1 at high temperatures.

Table 2 contains a summary of experimental conditions during data collection and structural refinement parameters

Figure 2

Lattice parameters of Ge olivines of this study in comparison with literature data [the mean radius is defined as $r_M = (\langle r_{M1} \rangle + \langle r_{M2} \rangle)/2$]; filled circles: this study; open circles: Ca silicate olivines; crossed squares: M_2 SiO₄ olivines (M = Ni, Mg, Co, Fe and Mn). References to literature data are compiled in Table 4; standard deviations are smaller than the symbols if not displayed; lines fitted to the data are guides to the eye.

for five selected samples; the refined fractional atomic coordinates and equivalent isotropic and anisotropic displacement parameters have been deposited,¹ together with the complete set of single-crystal data for all the 11 samples investigated. Table 3 compiles selected bond lengths, bond angles and distortion parameters, while Table 4 contains structural parameters for some Ca silicate and M_2SiO_4 olivine compounds, recalculated from literature data using the lattice parameters and fractional atomic coordinates as given in the Inorganic Crystal Structure Database (ICSD, 2006).

3.1. Lattice parameters

The lattice parameters of the Ge olivines are largely controlled by the size of the octahedral cation. In the following, structural parameters are displayed as a function of the average octahedral cation radius $r_M = \langle r_{M1} \rangle + \langle r_{M2} \rangle)/2$, calculated from refined *M*1 and *M*2 site compositions and the ionic radii given by Shannon & Prewitt (1969). The variations of *a*, *b* and *c* with r_M (Fig. 2) appear to be linear and have a similar slope to the data for the Ca silicate olivines. Interestingly, the data for the *b* lattice parameters for Ca silicate and Ca germanate olivines plot onto each other, regardless of the fact that Ge⁴⁺ has a distinctly larger ionic radius than Si⁴⁺ (0.40 and 0.26, respectively). This result demonstrates that the *b* dimension is actually unaffected by substitutions on the tetrahedral site. In addition, the *a* axes (the long ones) are only \sim 1.4% longer in the germanate than in the silicate, while the *c* axes (the short lattice parameter) are between 8.2 and 9.7% longer in the germanate compounds, identifying this axis as the most sensitive to the replacement of Si⁴⁺ by Ge⁴⁺.

When comparing the Ca olivines with the $M_2 SiO_4$ olivines (M = Ni, Mg, Co, Fe and Mn) it is evident that only the *b* lattice parameter exhibits a common trend with r_M for all olivines and that, especially for the long axis (here *a*), distinct differences in slope and dimension are observable. For both *a* and *c* there is an evident discontinuity in the data between M_2SiO_4 and Ca $MSiO_4$ olivines.

In the Ca germanate olivines of this study, the introduction of M^{2+} onto M1 causes an anisotropic expansion of the lattice (Fig. 2d), with the *b* lattice parameter showing the largest variation with r_M , while the *a* lattice parameter only expands by 1% between CaMgGeO₄ and Ca₂GeO₄. The largest expansion of the lattice is thus parallel to the *M*1-chain direction, while along *a* the Ca²⁺ sites seem to buffer the

¹ Supplementary data for this paper are available from the IUCr electronic archives (Reference: WS5059). Services for accessing these data are described at the back of the journal.

increasing size of the M1 cation when changing from Mg²⁺ to Ca²⁺.

3.2. The M1 site

The average M1-O bond lengths for the olivine samples are linearly correlated with the average radius of the M1cation, r_{M1} (Fig. 3*a*), and display similar values for samples with $M2 = Ca^{2+}$, regardless of the type of tetrahedral cation. Furthermore, individual M1-O bond lengths are similar in both the Ca germanate and the Ca silicate olivines. This behaviour shows that the substitution of the tetrahedral cation has little influence on the size requirements of the M1 site. Data for the M_2 SiO₄ olivines are slightly off the common trend of the Ca olivines, with similar individual M1-O3 and shorter $M1 - O1^{v}$ and $M1 - O2^{vi}$ bond lengths (see Fig. 1 for symmetry codes). The size enhancement of the M1 cation in the Ca germanate olivines causes a direction-dependent increase of individual M1-O bond lengths (Fig. 3b), with the M1-O3 bond length – being aligned approximately along the (102)direction - increasing most distinctly (by 11.2% from the Mg to the Ca composition), while $M1-O1^{v}$ increases by 7.5% in the same r_{M1} range. As a consequence, the bond-length distortion parameter (BLD; Renner & Lehmann, 1986)

slightly increases with r_{M1} , although the BLD is small compared with those for the Ca silicate olivines and most of the M_2 SiO₄ olivines (Table 4). Among the octahedral oxygenoxygen edges, the largest enhancements with r_{M1} are found for the unshared edges $O2^{vi} \cdots O3$ and $O1^{viii} \cdots O3$ (with an increase of 14.9 and 11.3%, respectively), while the $O2 \cdot \cdot \cdot O3$ edge, common to the M1 octahedron and the Ge tetrahedron, is distinctly hampered in expansion and increases by only 2.4%. The increase of the O···O edges with r_{M1} is linear in all cases. The different increase of the octahedral edges with increasing size of the M1 cation directly affects the distortional state of the M1 polyhedron, *i.e.* the deviation from ideal octahedral geometry, expressed by the distortion parameters octahedral angle variance (OAV) and octahedral quadratic elongation (OQE), both as defined by Robinson et al. (1971). Within the Ca germanate series the OAV increases distinctly and is almost twice as large in Ca₂GeO₄ as in CaMgGeO₄.

Two reasons for this effect are (i) the decrease of the O2–M1-O3 angle, opposite to the common O2···O3 edge between M1 and the tetrahedral site, from 77.6 (1) to 71.3(1)° (-8.2%) and (ii) the opening up of the O2– $M1-O3^{vii}$ angle, opposite to the unshared O2···O3^{vii} edge, from 102.4 (1) to 108.7 (1)° (+6.2%). Generally, in all three series, the M_2 SiO₄, the Ca silicate and the Ca germanate olivines, the OAV

Variation of derived structural parameters with the average cationic radius of the M1 site for the Ge olivines of this study in comparison with literature data: (a) average M1-O bond length, (b) individual M1-O bond lengths, (c) octahedral angle variance (Robinson *et al.*, 1971) and (d) volume; symbols as in Fig. 2.

increases with r_{M1} (Fig. 3c), the M1 site in the germanate olivines being more regular than those in the other two series. The same observation is made for the OQE (not shown, for the sake of brevity). The volume of the M1 polyhedron increases linearly with r_{M1} for the Ca germanate olivines (Fig. 3d). It is also evident that the germanate olivines display a larger polyhedral volume than the Ca silicate olivines, and the latter have larger volumes than the M_2SiO_4 olivines (Fig. 3d). The volume of the M1 octahedron also depends on the composition of neighbouring polyhedra and increases with increasing size of the neighbouring cations (Ca²⁺ and Ge⁴⁺).

3.3. The M2 site

For the purpose of comparison with $M_2 \text{SiO}_4$ olivine, variations of structural parameters for the M2 site are displayed as a function of the average cationic radius r_M (as defined above). Within the Ca germanate series, no substitution takes place at the M2 site; thus, *a priori*, one would not expect any distinct alterations within the size and shape of the M2 polyhedron. Indeed, there are only small variations of average M2-O(Ca-O) bond lengths within the Ca olivine series and – similarly to the M1-O bond lengths – the Ca-O bond lengths are close to each other in the germanate and the silicate series, regardless of the chemical identity of the tetrahedral cation. An extrapolation of the r_M variation with average M2-O bond length for the M_2SiO_4 olivine samples fits the data well for pure Ca_2SiO_4 (Fig. 4*a*). Individual Ca-Obond lengths, however, do not show a uniform variation with r_M within the Ca germanate series (Fig. 4b); the Ca $-O1^v$ bond length remains almost constant and Ca-O2ⁱⁱ decreases by $\sim 1\%$. Both bonds point in the **a** direction, which – as mentioned above – displays the smallest expansion upon M1cation substitution. Conversely, the Ca-O3 and Ca-O3ⁱⁱⁱ bonds increase by 1.1 and 2.7%, respectively. The latter two bonds point in directions having additional components along **b** and **c** and thus are affected by the *M*1-site substitutions. In general, the variation of the individual M2-O bonds becomes similar with increasing r_M within the Ca germanate series, as expressed by a linear decrease of the bond-length distortion (Fig. 4c). Ca silicate olivines have similar (small) BLD parameters, while for the M_2 SiO₄ olivine samples there is an increase of BLD with r_M for small M1 cations, and for larger average cationic sizes BLD decreases; the largest BLD values were calculated for Fe₂SiO₄-rich or pure Fe₂SiO₄ (favalite) samples (Table 4). Among the oxygen-oxygen edges of the M2 octahedron, the $O3^{iii} \cdots O3^{iv}$ edge, parallel to the *b* axis, increases by as much as 9.1% from CaMgGeO4 to Ca2GeO4 as

Variation of derived structural parameters with the average cationic radius of the M2 site for the Ge olivines of this study, partly in comparison with literature data: (a) average M2-O bond length, (b) individual M2-O bond lengths, (c) bond-length distortion (Renner & Lehmann, 1986) and (d) octahedral angle variance (Robinson *et al.*, 1971); symbols as in Fig. 2.

a direct consequence of M1-site cationic substitution; a similar large increase by 7.0% is found for the $O1^{v}\cdots O3^{i}$ edge, also strongly influenced by the M1 substitutions. Conversely, the $O3\cdots O3^{i}$ edge, common to the M2 and the tetrahedral sites, remains almost unaffected by the M1-site substitution; the $O3^{i}\cdots O3^{iii}$ edge, cross-linking two different M1 chains along the $\langle 102 \rangle$ direction, becomes shortened by 2.4%. The polyhedral distortion parameters OAV and OQE for the Ca germanate samples are both large but remain within the range $120-130^{\circ}$ for OAV (Fig. 4*d*) and 1.034-1.037 for OQE, both parameters displaying a nonlinear (quadratic) variation. A similar dependency of OAV and OQE is valid for the Ca silicate olivines; however, here the *M*2 octahedron appears to be more distorted (Fig. 4*d*). It follows that the introduction of

1.770

Figure 5

Comparison of the derived variation of structural parameters with the average cationic radius of the M1 and M2 sites for the Ge olivines of this study: (a) average M-O bond length, (b) bond-length distortion (Renner & Lehmann, 1986) and (c) octahedral quadratic elongation (Robinson *et al.*, 1971); symbols as in Fig. 2.

Variation of derived structural parameters with the average cationic radius of the tetrahedral site for the Ge olivines of this study, partly in comparison with literature data: (a) average T-O bond length, (b) individual tetrahedral O···O edges and (c) tetrahedral angle variance (Robinson *et al.*, 1971); symbols as in Fig. 2.

larger cations onto the M2 site increases the octahedral distortion on M2; the extrapolation of the data for the M_2SiO_4 olivine samples fits well the data for the Ca silicate olivines (Fig. 4*d*).

In conclusion, the variations in structural parameters on the M2 site are largely dominated by the variations on M1 and the tetrahedral site, and M2 acts as a buffer to keep the structural units of the M1 chain and the isolated tetrahedra fitting together.

It is generally accepted that the M^2 polyhedron in olivine is the larger and more distorted polyhedron. This also holds true for most of the samples of this study, as indicated by the comparison of the variation of the average M1-O and M2-O bond lengths (Fig. 5*a*), the BLDs (Fig. 5*b*) and the OAVs (Fig. 5*c*). However, with increasing average cationic radius, *i.e.* towards the Ca₂GeO₄ composition, data for M1 and M2approach each other, and in Ca₂GeO₄ the M2 polyhedron appears to be more regular than the M1 octahedron.

3.4. The tetrahedral site

Similarly to the M2 site, no substitution takes place on the tetrahedral site within the complete series; however, for the samples of this study, T is occupied by the distinctly larger Ge^{4+} [r(Ge⁴⁺) = 0.40 Å], while it is occupied by Si⁴⁺ [r(Si⁴⁺) = 0.26 Å; Shannon & Prewitt, 1969] in the two other series. This size difference of cations is, of course, reflected in the average T-O bond lengths, which, on the other hand, remain almost constant within the Ge⁴⁺ and the Si⁴⁺ series themselves (Fig. 6a). The differences in average $T \cdots O$ bonds between the silicate and the germanate olivines amount to ~0.13 to +0.15 Å and correlate with the differences in the ionic radii of the two cations. Individual T-O bond lengths do not show any significant variation with r_M and, regardless of the dimensional differences, silicate and germanate olivines possess very similar BLD parameters of around 0.5%. Distinct alterations with r_M are found for the O···O edges of the tetrahedron and - coupled with this - in the O-T-O bond angles. The $O2 \cdots O3$ edge, common to the tetrahedron and the M1 site, increases by 2.6% owing to the increase of the M1-octahedral size (Fig. 6b). Although this is the smallest variation with r_M for an M1-octahedral $O \cdots O$ edge, it is among the largest variations for the tetrahedral $O \cdots O$ edges. The O2 - T - O3angle, opposite to the aforementioned edge, increases by $\sim 3\%$ and approaches the ideal tetrahedral O-T-O bond angle. A second distinct variation with r_M is found for the unshared O1···O2 edge, which - in contrast to the O2···O3 edge decreases by 2.5% from $CaMgGeO_4$ to Ca_2GeO_4 ; the angle opposite to this edge decreases but also becomes closer to the ideal tetrahedral bonding angle of 109.47° . As the $O1 \cdots O2$ edge links two different M1 chains along the c direction, the decrease of this edge can also be explained by the increasing size of the M1 cations (with increasing M1-O bond lengths), which exert dimensional strain onto this edge, thus shortening it. Similar variations of the O1···O2 and O2···O3 edges are also found for the silicate olivines; however, the trends are not as clearly defined as for the data of this study. The alterations in O-T-O angles directly affect the tetrahedral angle variance (TAV) and the tetrahedral quadratic elongation (TQE; Table 3), which both decrease distinctly with increasing r_M (Fig. 6c). While an increase of r_M causes the octahedra to become more distorted, the tetrahedra become more regular. This is also valid for the silicate olivine samples (Fig. 6c).

GJR gratefully acknowledges financial support by the 'Fonds zur Förderung der wissenschaftlichen Forschung (FWF)', Vienna, Austria, under grant R33-N10 (Erwin-Schrödinger Rückkehr-Stipendium).

References

- Artioli, G., Rinalid, R., Wilson, C. C. & Zanazzi, P. F. (1995). Am. Mineral. 80, 197–200.
- Barbier, J. & Levy, D. (1997). Z. Kristallogr. 212, 519-528.
- Boström, D. (1987). Am. Mineral. 72, 965–972.
- Brown, G. E. Jr (1980). Min. Soc. Am. Rev. Mineral. 5, 275-381.
- Bruker (2001). *SMART-Plus* (Version 5.6) and *SAINT-Plus* (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bykov, A. B., Petricevic, V., Steiner, J., Yao, Di., Isaacs, L. L., Kokta, M. R. & Alfano, R. R. (2000). J. Cryst. Growth, 211, 295–301.
- Deer, W. A., Howie, R. A. & Zussman, J. (1997). *Orthosilicates, Rock-Forming Minerals*, Vol. 1, 2nd ed. London: Geological Society Publishing House.
- Della Giusta, A., Ottonello, G. & Secco, L. (1990). Acta Cryst. B46, 160–165.
- Downs, R. T. (2005). Commission on Powder Diffraction, International Union of Crystallography Newsletter, 30, 32–33.
- Duijn, J. van, de Graaff, R. A. G. & Ijdo, D. J. W. (1995). Mater. Res. Bull. 30, 1489–1493.
- Eulenberger, G., Wittmann, A. & Nowotny, H. (1962). *Monatsh. Chem.* **93**, 1046–1054.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Folco, L. & Mellini, M. (1997). Eur. J. Mineral. 9, 964–973.
- Francis, C. A. & Ribbe, P. H. (1980). Am. Mineral. 65, 1263-1269.
- Fujino, K., Sasaki, S., Takéuchi, Y. & Sadanaga, R. (1981). Acta Cryst. B**37**, 513–518.
- Ghose, S. & Wan, C. (1974). Contrib. Mineral. Petrol. 47, 131-140.
- Hayward, C. L., Angel, R. J. & Ross, N. L. (1994). Eur. J. Mineral. 6, 313–321.
- Henderson, C. M. B., Knight, K. S., Redfern, S. A. T. & Wood, B. J. (1996). Science, 271, 1713–1715.
- ICSD (2006). Inorganic Crystal Structure Database. Fiz-Karlsruhe, Germany, and the National Institute of Standards and Technology (NIST), USA.
- Kimata, M. & Nishida, N. (1987). Neues Jahrb. Mineral. Monatsh. pp. 160–170.
- Lager, G. A. & Meagher, E. P. (1978). Am. Mineral. 63, 365-377.
- Losey, A., Rakovan, J., Hughes, J. M., Francis, J. M. & Dyar, M. D. (2004). Can. Mineral. 42, 1105–1115.
- Onken, H. (1965). Tschermaks Mineral. Petrogr. Mitt. 10, 34-44.
- Pennington, W. T. (1999). J. Appl. Cryst. 32, 1028–1029.
- Petit, P. E., Guyot, F., Fiquet, G. & Itié, J. P. (1996). Phys. Chem. Miner. 23, 173-185.
- Pilati, T., Demartin, F. & Gramaccioli, C. M. (1995). Acta Cryst. B51, 721–733.
- Princivalle, F. & Secco, L. (1985). Tschermaks Mineral. Petrogr. Mitt. 34, 105–115.
- Redfern, S. A. T., Artioli, G., Rinaldi, R., Henderson, C. M. B., Knight, K. S. & Wood, B. J. (2000). *Phys. Chem. Miner.* 27, 630– 637.
- Redfern, S. A. T., Henderson, M. B., Knight, K. S. & Wood, B. J. (1997). Eur. J. Mineral. 9, 287–300.

Redhammer, G. J. & Roth, G. (2003). Acta Cryst. C59, i38-i40.

- Redhammer, G. J. & Roth, G. (2006). Acta Cryst. C62, i61i63.
- Renner, B. & Lehmann, G. (1986). Z. Kristallogr. 175, 43-59.
- Reynard, B., Remy, C. & Takir, F. (1997). *Phys. Chem. Miner.* 24, 77–84.
- Rinaldi, R., Artioli, G., Wilson, C. C. & McIntyre, G. (2000). Phys. Chem. Miner. 27, 623–629.
- Rinaldi, R., Gatta, G. D., Artioli, G., Knight, K. S. & Geiger, C. A. (2005). *Phys. Chem. Miner.* **32**, 655–664.
- Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, **172**, 567–570.

- Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
- Sharp, Z. D., Hazen, R. M. & Finger, L. W. (1987). Am. Mineral. 72, 748–755.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (1996). X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.
- Streltsov, V. A., Belokoneva, E. L., Tsirelson, V. G. & Hansen, N. K. (1993). Acta Cryst. B49, 147–153.
- Weber, S. U., Grodzicki, M., Redhammer, G. J., Tippelt, G., Lottermoser, W. & Amthauer, G. (2007). Phys. Chem. Miner. 34, 507–515.